خبرهای فارکس

منظور از معاملات الگوریتمی چیست؟

معاملات الگوریتمی چیست؟

معاملات الگوریتمی چیست؟ تاثیر هوش مصنوعی در معاملات الگوریتمی چیست؟ آیا فرق اتو تریدینگ و الگو تریدینگ را می‌دانید؟ مزایا و معایب این نوع معاملات چیست؟ تا به‌حال نام معاملات الگوریتمی به گوشتان خورده است؟ زمانی که معاملات بورس راه افتاد هنوز رایانه‌ها به شکل امروزی در دنیای مالی نفوذ نکرده بودند و معاملات به‌صورت فیزیکی و سنتی انجام می‌شد. برای خرید و فروش یک سهم باید با ماشین یا اتوبوس به خیابان حافظ رفته و تازه قیمت روز سهم خود را روی تابلو می‌دیدید و فرم خرید و یا فروش را پر می‌کردید. اما امروز به لطف دنیای مجازی و اینترنت، پشت لپ‌تاپ شخصی خود نشسته و قیمت سهم‌ها را به‌صورت آنلاین در سایت کارگزاری می‌بینیم و معامله می‌کنیم.

معاملات الگوریتمی چیست؟

معاملات الگوریتمی یا معاملات خودکار یک ابزار برای معامله در بازارهای سرمایه است. بر این اساس شما می‌توانید با استفاده از هوش مصنوعی به‌صورت اتوماتیک و یا نیمه اتوماتیک و با استفاده از کدهای برنامه نویسی شده، موقعیت‌های مناسب در بازار را شناسایی و آن‌ها را شکار کنید.

خیلی‌ها معاملات الگوریتمی را با استراتژی معاملاتی یا فیلترنویسی اشتباه می‌گیرند. در‌صورتی که همه این‌ها زیرمجموعه‌ای از معاملات الگوریتمی هستند. درواقع معاملات الگوریتمی یک ابزار معاملاتی کامل است که شما با استفاده از این ابزار می‌توانید معاملات دقیق‌تر و سریع‌تری انجام دهید تا خطای کار را کاهش و نتایج معاملات را بهبود بخشید.

الگوریتم‌ها می‌توانند بیش از یکی باشند و به‌صورت ترکیبی و پیچیده مورد استفاده قرار گیرند. آن‌ها برای انجام معاملات، بررسی‌های مختلفی از جمله زمان‌بندی، قیمت و حجم را در بازار انجام می‌دهند و بر اساس دیتاهای موجود برای معاملات تصمیم‌گیری می‌کنند. این ابزار کمک می‌کند تا بدون درگیر شدن احساسات، در بازار معامله کرد که در نهایت موجب افزایش حجم معاملات می‌شود.

معاملات الگوریتمی برای چه کسانی کاربرد دارد؟

هر شخصی می‌تواند از این ابزارها برای معاملات خود در بازارهای مالی استفاده کند. از این ابزار در بازارهای بورس داخلی و خارجی نظیر بورس آمریکا، فارکس و ارزهای دیجیتال استفاده می‌شود.

منتهی از این ابزار فقط به قصد گرفتن سود در بازار استفاده نمی‌شود؛ بلکه گاهی اوقات از این ابزار فقط برای سیگنال‌گیری و محدود کردن تعداد فرصت‌های معاملاتی، اردرگذاری اتوماتیک یا مدیریت ریسک و سرمایه نیز استفاده می‌شود.

پیش‌نیازهای معاملات الگوریتمی

نتیجه مطلوب از معاملات الگوریتمی نیاز به بستری مناسب برای اجرایی شدن آن دارد. بستر معاملات الگوریتمی به سه عامل مهم بستگی دارد.

مطابقت‌دهنده‌های بازار یا منبع تغذیه داده‌ها

این مطابقت دهنده‌ها فرمت اطلاعات بازار را به فرمتی که برای سیستم قابل درک باشد، تبدیل می‌کنند. همچنین دسترسی لازم به اطلاعات حساب و دیتاهای بازار فراهم می‌کنند. این کار از طریق رابط برنامه‌نویسی یا همان API که بازار معاملاتی در اختیار معامله‌گر قرار داده، انجام می‌شود.

موتور پردازش داده‌های معاملات الگوریتمی

این موتور مغز متفکر معاملات الگوریتمی است. موتور پردازش‌گر در این مرحله الگوریتم‌های برنامه‌ریزی شده توسط استراتژی‌های معاملاتی و شروط تعیین شده ما را باهم و در آن واحد روی کل بازار اعمال می‌کند و هرگاه شرایط لازم در سهمی پیدا شد، برای معامله تصمیم‌گیری می‌کند. به‌عنوان مثال فرض کنید که ما می‌خواهیم سهم‌هایی که در بازار RSI آن‌ها زیر 30 است را شناسایی کنیم. از بین صدها سهم بازار شاید برای انسان این کار بسیار زمان‌بر و دشوار باشد، اما برای یک موتور پردازش کننده بسیار راحت است.

ارسال سفارشات به بازار توسط الگوریتم‌ها

در این مرحله سفارشاتی که با الگوریتم‌های ما مطابقت دارند به بازار ارسال می‌شود. تنها نکته‌ای که اینجا مهم است این است که بستری که الگوریتم ما روی آن کار می‌کند، برای بازاری که در آن معامله می‌کنیم، قابل درک باشد.

الگوریتم‌های معاملاتی چه وظایفی دارند؟

معاملات الگوریتمی برای انجام درست و کامل بر اساس استراتژی مشخص‌ شده چهار وظیفه کلی دارند:

  • رصد و تحلیل کل بازار به‌صورت دقیق و با بیشترین سرعت ممکن
  • ثبت اردرها و پوزیشن‌گیری
  • مدیریت پوزیشن
  • مدیریت ریسک و سرمایه

هر الگوریتم معاملاتی می‌تواند هریک این چهار مورد را به‌طور کاملا اتوماتیک و با استفاده از ربات‌های معامله‌گر انجام دهد که به آن معاملات خودکار یا کاملا اتوماتیک می‌گویند. گاهی هم این چهار مورد به‌صورت ترکیبی با هوش انسانی در معاملات به‌کار گرفته می‌شود که در این‌صورت به آن معاملات نیمه خودکار می‌گویند.

طبقه‌بندی عملکردی معاملات الگوریتمی

الگوریتم‌ معاملاتی یا الگوریتم‌های معاملاتی در بازار بر اساس کارهایی که انجام می‌دهند و وظایفی که برعهده دارند، در طبقه‌بندی‌های مختلفی قرار می‌گیرند.

الگوریتم‌های اجرای معاملات

این نوع الگوریتم‌ها صرفا برای مدیریت اردرگذاری و اجرای معاملات به‌کار گرفته می‌شوند. تحلیل داده‌ها پس از پردازش برای این الگوریتم‌ها ارسال و آن‌ها براساس داده‌های موجود اقدام به اردر‌گذاری سفارشات بر اساس استراتژی تعیین شده می‌کنند. نحوه اردرگذاری در این نوع الگوریتم‌ها هم می‌تواند به‌صورت اتوماتیک و هم به‌صورت دستی باشد و الگوریتم تنها موظف به اجرای آن‌ها است.

به‌عنوان مثال فرض کنید یک شخص حقوقی می‌خواهد به اندازه 100 میلیارد تومان از یک سهم و در بازه قیمتی مشخصی خرید کند. خوب قطعا یک اردر 100 میلیارد تومانی مشکل‌ساز خواهد بود. زیرا در این صورت ممکن است قیمت تغییر کند و یا اصلا اردر ما باعث ایجاد تشکیل صف خرید شود. برای حل چنین مشکلی از الگوریتم‌های اجرای معاملات استفاده می‌شود که کار را برای ما راحت‌تر کنند. با استفاده از قابلیت مدیریت اردرها، این الگوریتم‌ها می‌توانند اردر بزرگ شما را با توجه به حجم بازار به هزاران اردر ریز تبدیل کنند تا خریدتان راحت‌تر انجام شود. این عملیات در زمان فروش نیز به همین شکل خواهد بود.

الگوریتم‌های سیگنال‌دهی

الگوریتم‌های سیگنال‌دهی همان‌طور که از اسمشان پیدا است، تنها وظیفه رصد و تحلیل بازار را بر عهده دارند و به تنهایی سودآور نیستند. این الگوریتم‌ها داده‌های کل بازار را به‌صورت همزمان زیر نظر می‌گیرند و هرگاه شرایط یک سهم با استراتژی از پیش تعیین شده ما مطابقت پیدا کرد آن را به ما گزارش می‌دهند. به‌عبارت دیگر یکی از مهم‌ترین کاربردهای این نوع الگوریتم‌ها در فیلتر بازار و شناسایی سهم‌های خوب است.

الگوریتم‌های بهینه‌ساز کننده

این الگوریتم‌ها کار پایش استراتژی و مطابقت آن با شرایط روز بازار را برعهده دارند. همان‌طور که می‌دانیم، میزان سود و ضررهای یک استراتژی در شرایط بازار صعودی و نزولی یکسان نخواهد بود. این الگوریتم‌ها، استراتژی ما را با شرایط بازار در گذشته تست می‌کنند. تغییرات بازار از گذشته تا به زمان حال را در بهینه‌ترین حالت ممکن برای ما پیدا می‌کنند و آن تغییرات را روی استراتژی ما اعمال می‌کنند.

بهینه‌سازی استراتژی می‌تواند معیارهای زیادی داشته باشد که ما بر اساس اولویت‌مان آن‌ها را برای الگوریتم‌مشخص می‌کنیم. به‌عنوان مثال ممکن است اولیت‌ها را بر اساس بیشترین سود، کمترین ضرر یا ترکیبی از این دو حالت تنظیم کنیم. این الگوریتم‌ها باعث می‌شوند تا ما بتوانیم استراتژی معاملاتی خود را با توجه به شرایط بازار همیشه به‌روز و در بهینه‌ترین حالت ممکن نگهداریم.

الگوریتم‌های تریدینگ

الگوریتم‌های تریدینگ وظیفه خرید و فروش سهم بر اساس استراتژی از قبل تعیین شده معامله‌گر را دارند. به‌عنوان مثال فرض کنید که استراتژی ما خرید پلکانی سهم در صف فروش و فروش آن در صف خرید است. بر همین اساس این الگوریتم به محض دیدن صف فروش درسهم مورد نظر عملیات خرید را آغاز و در قیمت‌های از پیش تعیین شده و صف خرید، عملیات فروش سهم را آغاز می‌کند.

این نوع الگوریتم‌ها براساس دوره زمانی ازقبل برنامه‌ریزی شده به دو نوع کم‌بسامد و پربسامد تقسیم می‌شوند.

الگوریتم‌های کم‌بسامد (LFT)

منظور از الگوریتم‌های تریدینگ کم‌بسامد (Low Frequency Trading) این است که فاصله زمان دریافت داده‌های بازار زیاد باشد. به‌عبارت دیگر در این نوع الگوریتم‌ها بالا بودن سرعت دریافت و پردازش داده‌ها خیلی مهم نیست. بر همین اساس استراتژی‌های معاملاتی در این الگوریتم‌ها برای تایم‌های میان مدت و بلند مدت برنامه‌ریزی می‌شوند.

این نوع الگوریتم‌ها باتوجه به محدودیت‌ها با شرایط بازارهای داخلی ایران سازگار هستند.

الگوریتم‌های پربسامد (HFT)

الگوریتم‌های پربسامد مخفف عبارت (High Frequency Trading) است. بر خلاف الگوریتم‌های کم‌بسامد، سرعت دریافت داده‌ها در این الگوریتم بسیار منظور از معاملات الگوریتمی چیست؟ اهمیت دارد. همان‌طور که از اسمشان پیداست این الگوریتم‌ها مناسب نوسان‌گیری در تایم‌های کمتر از روزانه مورد استفاده قرار می‌گیرند. هرچه سرعت دریافت داده‌ها در این الگوریتم بیشتر باشد، دقت معامله در آن نیز بیشتر خواهد بود و الگوریتم قادر خواهد بود که در تایم‌های پایین‌تر نیز به معامله بپردازد.

به‌عنوان مثال درمقیاس بازارهای جهانی، سرعت دریافت داده‌ها در برخی از الگوریتم‌های پربسامد، به میکرو ثانیه می‌رسد؛ که آن‌ها را قادر می‌سازد تا درتایم‌های یک دقیقه و حتی کمتر نیز به معامله بپردازند. هدف از این نوع معاملات، دریافت سود کم در تعداد معاملات زیاد است.

نکته مهم دیگر این است که حتی اگر شما به همچین الگوریتمی هم دسترسی داشته باشید، ابتدا باید ببینید هسته معاملاتی بازاری که در آن کار می‌کنید، توان پردزاش داده‌ها را در چنین مقیاس سرعتی دارد یا خیر. زیرا اگر این بستر فراهم نباشد دقیقا مصداق این مثال است که شما پر سرعت‌ترین خودروی جهان را در اختیار دارید، اما در جاده‌ای خاکی. بنابراین این نوع الگوریتم‌ها در ایران با محدودیت‌های زیادی مواجه هستند و کاربرد زیادی ندارند.

درحقیقت معاملات الگوریتمی هم مثل دراختیار داشتن اینترنت یا دانش شکافتن اتم است. خوب یا بد بودن آن بستگی به نوع دیدگاه و نحوه استفاده ما از این ابزار دارد. دقیقا همان‌طور که از شکافتن اتم در علوم پزشکی استفاده شد، اما با همان دانش بمب اتم هم تولید کرده‌اند.

اهمیت استراتژی در الگوریتم‌ها

الگوریتم‌ها به تنهایی و بدون داشتن یک استراتژی سودآور نمی‌توانند کاری انجام دهند. لذا داشتن یک استراتژی سودآور با دقت بک تست بالای 90% در الگوریتم‌ها بسیار مهم و حیاتی است. درواقع الگوریتم‌های معاملاتی برای این‌که بتوانند جای ما در بازارهای مالی تصمیم بگیرند، نیاز به استراتژی دارند.

انواع استراتژی در الگوریتم‌های معاملاتی

استراتژی‌های معاملاتی در بازارهای مالی به چند دسته تقسیم‌بندی می‌شوند:

استراتژی‌های Trend Following

استراتژی‌های ترند فالویینگ یا همان دنباله‌روی روند، همان‌طور که از اسمشان مشخص است، به دنبال پیش‌بینی بازار برای آینده نیستند و همزمان با روند در نمودار، جهت معاملات خود را نیز تغییر می‌دهند. این نوع استراتژی یکی از ساده‌ترین انواع استراتژی‌ها است که طرفداران بسیار زیادی نیز در جهان دارد.

اصول و مبنای برنامه‌ریزی چنین استراتژی معاملاتی استفاده از میانگین‌های قیمتی است. سپس براساس اندیکاتور‌ها و سایر شواهد بازار اقدام به صدور سیگنال خرید و فروش در بازار می‌کنند.

استراتژی آربیتراژ (Arbitrage)

به‌طور خلاصه استراتژی آربیتراژ یعنی کسب سود از محل اختلاف قیمت در بازار. در اینجا مفهوم آربیتراژ را با ذکر مثالی برای شما بیان می‌کنیم. فرض کنید شرکتی قصد خرید کالای X را به قیمت 1000 تومان دارد. بر حسب اتفاق شما شخصی را می‌شناسید که می‌خواهد همان کالا را به قیمت 800 تومان به‌فروش برساند. خوب کار بسیار راحت است. شما تمام کالاهای فروشنده را به‌قیمت 800 تومان خریده و تمام آن را به قیمت 1000 تومان به شخص خریدار می‌فروشید. این اختلاف قیمت درواقع همان سود بدون ریسک یا همان آربیتراژ است.

در بازارهای مالی نیز این کار ممکن است. کار استراتژی‌های آربیتراژ کننده نیز همین است که تمام داده‌های قیمتی در بازارهای مختلف را باهم قیاس کنند و درصورت پیدا شدن موردی مشابه از فرصت به‌دست آمده نهایت استفاده را می‌برند. معمولا این نوع استراتژی‌ها در بازارهای متمرکز مورد استفاده قرار می‌گیرند. به‌عنوان مثال اختلاف قیمت بیتکوین در بین صرافی‌های مختلف می‌تواند یکی از این فرصت‌ها را به‌وجود آورد.

استراتژی معامله پیش از توازن در صندوق‌های شاخصی

در بازار بورس صندوق‌های سرمایه‌گذاری مختلفی وجود دارند که بر اساس شاخصی خاص (دارایی‌های مسکن، دارایی‌های طلا، اوراق قرضه و. ) مشغول به فعالیت در آن حوزه هستند. معمولا این صندوق‌ها را با شاخص همان حوزه فعالیتشان می‌سنجند. اساس کار این استراتژی این است که بازدهی صندوق‌ها تمایل دارند همیشه خود را به شاخص نزدیک کنند. بر همین اساس زمانی که بازدهی این صندوق‌ها پایین‌تر از شاخصشان باشد، به‌صورت پلکانی شروع به خرید می‌کنند و زمانی که بازدهی آن‌ها بیشتر از شاخص باشد، شروع به فروش آن‌ها می‌کنند. این نوع استراتژی‌ها می‌توانند براساس تایم فریمی که در آن معامله انجام می‌شود، کم‌بسامد (LFT) یا پربسامد (HFT) تعریف شوند.

استراتژی‌های مبتنی بر مدل ریاضی

استراتژی‌های مختلفی در بازار وجود دارند که بر اساس مدل‌های ریاضی ثابت شده، تعریف می‌شوند. مانند استراتژی دلتا، تحلیل پوششی داده‌ها و. ازجمله استراتژی‌های مبتنی بر مدل ریاضی هستند که الگوریتم‌های معاملاتی بر اساس این استراتژی‌ها برنامه‌ریزی می‌شوند. استراتژی‌های گرید تریدینگ (Grade Trading) نیزاز همین دسته استراتژی‌ها هستند که برای رسیدن به سودآوری نیاز به تحلیل ندارند.

به‌عنوان مثال فرض کنید شما با مبلغ 1 دلار در یک شرط‌بندی شیر یا خط (پرتاب یک سکه) شرکت می‌کنید و به‌صورت شانسی یک روی سکه را برای شرط‌بندی خود انتخاب می‌کنید.

دوحالت وجود دارد:

اگر ‌برنده شدید که مشکلی وجود ندارد؛ اما اگر شما برنده نشدید، مجدد روی همان طرف سکه اما به اندازه 2 دلار (دو برابر حجم اولیه) شرط‌بندی می‌کنید. این‌بار اگر ببرید، 4 دلار برنده می‌شوید، درحالی که تنها 3 دلار هزینه کرده‌اید (یک دلار سود). اگر بازهم برنده نشدید، دوباره همان شرط را با دو برابر حجم قبلی ادامه دهید (4دلار). این‌بار اگر برنده باشید، 8 دلار برنده می‌شوید درحالی که تنها 7 دلار هزینه کریده‌اید. این قضیه آن‌قدر ادامه پیدا می‌کند تا یک‌بار برنده شوید. در این‌صورت شما به‌اندازه میزان خرج کرد + 1 دلار برنده می‌شوید.

طبق احتمالات و ریاضیات این سیستم در انتها همیشه برنده خواهد بود؛ اما به شرطی که اصول مدیریت حجم و سرمایه مخصوص به خود را هم در آن رعایت کنید. این نوع استراتژی‌ها برای ورود به یک معامله نیازبه تحلیل ندارند و تنها متکی به اصول ریاضیات هستند.

استراتژی‌های گرید تریدینگ برای شروع کار حجم اولیه بالایی را نیاز دارند تا ریسک اولیه کار را کاهش دهند. بعد از این‌که استراتژی به سود نشست، دیگر خطری حساب را تهدید نکرده و بعد ازمدتی این الگوریتم به یک ماشین پولسازی تبدیل می‌شود. برای سودآوری بیشتر از این نوع استراتژی‌ها در الگوریتم‌های مدیریت سرمایه نیز می‌توان استفاده کرد.

استراتژی‌های بازگشت به میانگین سهم

ایده بازگشت به میانگین دربازارهای مالی بر این اساس استوار است که یک دارایی همواره میانگینی بین کمترین و بیشترین قیمت خودش در بازار را دارد و در زمان‌هایی که زیر کف میانگین و یا بالاتر از این میانگین قرار دارد، تمایل به برگشت به خط میانگین درآن دیده می‌شود. این نوع استراتِژی‌ها می‌توانند بر اساس نوع داده‌های تحلیلی به سه قسمت استراتژی‌های میانگین قیمتی (WAP)، ماینگین حجمی (VWAP) و میانگین زمانی (TWAP) تقسیم‌بندی شوند.

الگوریتم‌هایی که بر اساس این نوع استراتژی‌ها برنامه‌ریزی می‌شوند، بر اساس محدوده شناسایی شده و تعریف شده‌ای که در اختیار دارند، هنگامی که از محدوده مورد نظر دور می‌شوند، اقدام به خرید و فروش می‌کنند.

مزایا و معایب معاملات الگوریتمی

به‌نظر شما استفاده از ابزار معاملات الگوریتمی در بازار بورس خوب است یا بد؟

معاملات الگوریتمی در بورس چیست؟

افراد به منظور سرمایه‌گذاری در هر زمینه‌ای باید نسبت به ساز و کار و چهارچوب‌های آن بازار شناخت داشته باشند. آموزش رکن اساسی هرگونه سرمایه‌گذاری محسوب می‌شود و افراد با مجهز بودن به آن می‌توانند موفق‌تر عمل کنند. بازار سرمایه یکی از بازارهای مهیج و سودآور در کشور است که افراد می‌توانند با تزریق سرمایه خود به این بازار کسب درآمد کنند. در بازار بورس انواع و اقسام روش‌های معامله وجود دارد که هر شخص با فراگرفتن آن‌ها و چیدن استراتژی معاملاتی بورسی موفق می‌تواند معاملات یا خرید و فروش سهام را آغاز کند. یکی از انواع معاملات در بازار بورس، معاملات الگوریتمی است. در این مقاله قصد داریم بگوییم معاملات الگوریتمی در بورس چیست و به صورت مفصل به جزئیات و چهارچوب‌های این نوع از معامله در بورس بپردازیم.

منظور از معاملات الگوریتمی در بورس چیست؟

معاملات الگوریتمی یکی از انواع معاملات بازار بورس است که مبنای آن بر اساس علوم برنامه‌نویسی است. در این روش تا حد زیادی از خطای انسانی و محاسباتی کاسته می‌شود. از معاملات الگوریتمی در بورس به عنوان معاملات دقیق هم یاد می‌شود. در نظر داشته باشید که معاملات الگوریتمی با نام الگو تریدینگ هم شناخته می‌شود که از مجموعه دانش برنامه‌نویسی برای استفاده از این روش می‌توان بهره برد. همان‌طور که اشاره کردیم در روش معاملات الگوریتمی خطای انسانی از بعد محاسباتی به حداقل رسیده و امکان کسب سود نیز بیشتر خواهد بود.

این نوع از معاملات در بورس بر مبنای برنامه‌نویسی و با استفاده از الگوهای ریاضی امکان‌پذیر است. بر اساس این اصل، به دلیل عدم دخالت هیجانات و احساسات سرمایه‌گذاران، بازار بیشتر به سمت نقدینگی می‌رود و رنگ و بوی معاملات بهتر حس می‌شود. همان‌طور که می‌دانید و در ابتدای مقاله هم اشاره کردیم، استراتژی‌های متنوعی برای فعالیت در بازار بورس وجود دارد که استراتژی معاملاتی الگو تریدینگ به دلیل پردازش دقیق کامپیوتری از جایگاه ویژه‌ای برخوردار است و افراد با کسب دانش مربوطه نسبت به این استراتژی می‌توانند به شکل بهتری در سرمایه‌گذاری‌های خود اقدام کنند.

معامله‌گر در معاملات الگوریتمی با تنظیمات مربوط به آن می‌تواند قیمت سهام را مانیتور کند و زمانی که وضعیت تعریف شده شناسایی شد، دستور خرید و فروش اعمال می‌شود. در این روش معامله‌گر زمان زیادی را برای بررسی بازار و مانیتور قیمت سهم‌ها صرف نمی‌کند و تمامی فرآیندها طی یک برنامه‌نویسی مشخص به اجرا درمی‌آیند.

کسب سود بیشتر با معاملات الگوریتمی

هر شخص برای انجام معاملات در بازار بورس باید به مجموعه اطلاعات و دانش‌هایی تجهیز شده باشد که در غیر این صورت این فرآیند نتیجه جالبی نخواهد داشت. معامله‌گر با استفاده از استراتژی معاملاتی الگوریتمی، قادر است که نسبت به روش‌های دیگر سود بیشتری را کسب کند. در نظر داشته باشید که ساده‌ترین روش برای معامله، الگوی منظور از معاملات الگوریتمی چیست؟ ترند یا بررسی روند تغییرات است. بر اساس این الگو معامله‌گر با ارزیابی تغییرات قیمتی در بازه زمانی مختلف تصمیم می‌گیرد که سهم را به پرتفوی خود اضافه کند یا برای فروش آن اقدام کند. در این روش ابتدایی شخص باید مدت ‌زمان بیشتری را صرف بررسی و مشاهده قیمت‌های سهم‌های مختلف کند و همچنین اجازه می‌دهد که هیجانات و احساساتش در معاملات دخیل شود، اما همان‌طور که گفتیم در الگو تریدینگ معیار اصلی معامله‌گر بر اساس برنامه‌نویسی است، هیجانات و احساسات در آن دخیل نمی‌شود و در نهایت می‌تواند کسب سود بیشتری از این استراتژی معاملاتی برای خود داشته باشد.

مزایای معاملات الگوریتمی چیست؟

تا این بخش از مقاله تا حدودی با مزایای این نوع از معاملات در بورس آشنا شدیم. به منظور بررسی دقیق‌تر سایر مزایای این نوع از معاملات در بازار بورس به موارد زیر دقت کنید:

  • انجام معاملات در بهترین شرایط قیمتی سهم
  • اعمال سریع‌تر دستورهای قیمتی در خرید و فروش سهام
  • زمان‌بندی دقیق معاملات و جلوگیری از تغییرات آنی قسمت سهم
  • کاهش زیاد ریسک‌های محاسباتی توسط انسان
  • لحاظ نشدن دو عامل احساس و هیجان در فرآیند معاملات و کسب سود بیشتر
  • یافتن سهام مد نظر در کسری از ثانیه

معایب معاملات الگوریتمی چیست؟

  1. یکی از ارکان مهم در استفاده از روش الگوریتمی در معاملات، تسلط به بازار بورس و داشتن دانش نسبت به نحوه معاملات در این بازار است. از همین جهت این روش به ‌هیچ ‌عنوان برای افراد مبتدی مناسب نیست.
  2. در صورتی که شما در بازار بورس به عنوان یک معامله‌گر فعال و موفق شناخته شده باشید اما توانایی ورود اطلاعات و کدنویسی صحیح را در فرآیند معاملات الگوریتمی رعایت نکنید، به نتیجه دلخواه خود دست پیدا نمی‌کنید. پس برای استفاده از روش الگوریتمی شما باید در زمینه معاملات و علوم برنامه‌نویسی و کامپیوتر، دانش کافی را داشته باشید.
  3. در نظر داشته باشید برای استفاده از روش الگوریتمی در معاملات بورس، باید به اینترنت خوب که احتمال قطعی ندارد دسترسی داشته و از این موضوع مطمئن باشید. اطلاعاتی که شما در این کدنویسی وارد می‌کنید بنا به چهارچوب تعریف شده، به صورت لحظه‌ای به‌روزرسانی می‌شود. حال اگر ارتباط سیستم با اینترنت قطع شود، نتیجه متفاوتی از این فرآیند برای شما حاصل خواهد شد.
  4. این باور به غلط میان معامله‌گران وجود دارد که افرادی که با روش الگوریتمی به معاملات خود رسیدگی می‌کنند، نیازی به رصد بازار ندارند. در صورتی که این باور به کل اشتباه است و شما به عنوان یک معامله‌گر باید از زوایای مختلف نسبت به رصد بازار تمرکز داشته باشید.

به صورت کلی به این نکته توجه داشته باشید که اگر اطلاعات شما به صورت درست به سیستم وارد شود در نهایت پروسه معاملات شما به بهترین شکل ممکن مورد ارزیابی قرار می‌گیرد و به نتیجه دلخواه خود می‌رسید و از همین روش ممکن است به سودهای کلانی در بازار بورس دست پیدا کنید. تمامی این‌ها به این شرط است که شما یک استراتژی معاملاتی را به شکل صحیح در کامپیوتر به شکل کدنویسی تعریف کنید. در غیر این صورت ممکن است به هر نتیجه‌ای غیر از نتیجه دلخواه خود برسید که البته در این حالت ممکن است سرمایه شما در فرآیند انجام شده با ضرر و زیان مواجه شود.

بررسی استراتژی معاملات الگوریتمی

هر استراتژی معاملاتی در بورس نیازمند یک سری فرصت‌های مشخص به منظور عملکرد خوب است که در این بخش به رایج‌ترین استراتژی‌های الگوریتمی اشاره می‌کنیم:

استراتژی‌های پیرو روند یا ترند فالویینگ: متداول‌ترین استراتژی‌های الگو تریدینگ در میانگین حرکت (طریقه محاسبه فرمول میانگین متحرک ساده) ، شکست کانال، تغییرات سطح قیمت و اندیکاتورهای تکنیکالی مرتبط، از روند پیروی می‌کنند. این مراحل از ساده‌ترین انواع استراتژی‌های معاملاتی از طریق معاملات الگوریتمی است و به نوعی در این روش هیچ‌گونه پیش‌بینی قیمتی انجام نمی‌شود. استفاده از میانگین‌های حرکت 50 و 200 روز از استراتژی‌های پرطرفدار در استراتژی‌های ترند فالویینگ به شمار می‌روند.

آربیتراژ در معاملات الگوریتمی: همان‌طور که می‌دانید خرید سهم در قیمت پایین و به فروش رساندن آن در قیمت‌های بالاتر، موقعیت آربیتراژ را به وجود می‌آورد. اجرای یک الگوریتم برای شناسایی این تغییرات قیمت و پوزیشن‌گیری‌های کارا باعث ایجاد فرصت‌های معاملاتی سودده سرمایه‌گذاری در بورس می‌شود.

رنج یا محدوده معاملاتی: استراتژی محدوده معاملاتی در معاملات الگوریتمی یعنی قیمت‌های بالا و پایین دارای یک پدیده موقت هستند و به صورت دوره‌ای به قیمت‌های میانگین خود باز خواهند گشت. شناسایی و تعیین محدوده قیمت و اجرای یک الگوریتم معاملاتی مبتنی بر آن، به معامله‌گران این اجازه را می‌دهد تا در قیمت‌های داخل و خارج از رنج تعیین شده به طور خودکار پوزیشن‌گیری کنند.

درصد حجم: در این استراتژی تا زمان تکمیل شدن سفارش معاملات، این الگوریتم با توجه به نسبت مشارکت تعیین می‌شود و با توجه به حجم معامله شده، سفارش‌ها را با درصد مشخصی از حجم بازار ارسال می‌کند. وقتی قیمت سهام به سطوح تعریف شده توسط کاربر رسید، این میزان مشارکت افزایش یا کاهش داده می‌شود.

بررسی الزامات فنی معاملات الگوریتمی

انجام معاملات الگوریتمی، الزاماتی وجود دارد که در این بخش به آن‌ها اشاره می‌کنیم:

  • قابلیت اتصال به شبکه و پلتفرم‌های معاملاتی به منظور پوزیشن‌گیری
  • امکان دسترسی به اطلاعات و داده‌های بازار که به واسطه یک سری الگوریتم‌ها مورد ارزیابی قرار می‌گیرند.
  • امکان تست گرفتن از سیستم قبل از اجرای فرآیند مد نظر در بازارهای واقعی
  • با توجه به پیچیدگی‌های موجود در علم برنامه‌نویسی، نسبت به انتشار نرم‌افزار معاملاتی مخصوص اقدام شود.

سخن آخر

در این مقاله از زوایای گوناگون معاملات الگوریتمی را بررسی کردیم و به استراتژی‌های متداول در این نوع از معاملات اشاره کردیم. همان‌طور که خواندید روش‌های متنوعی از معاملات در بازار بورس وجود دارد که هر کدام مزایای خاص خود را دارد به شرطی که شما دانش مربوط به آن‌ها را کسب کرده باشید. در این میان معاملات الگوریتمی یا همان الگو تریدینگ یکی از انواع معاملات در بورس است که به دلیل سیستمی بودن آن و نبود خطاهای انسانی، می‌توان به سود بیشتری دست یافت. البته برای استفاده از این استراتژی معاملاتی در بورس باید دانش‌های مربوط به آن را کسب کنید و بعد معاملات خود را بر این اساس اجرا کنید. این نوع از معاملات دارای مزیت‌های بیشتری است که به شرط تسلط به آن می‌توانید عملکرد بهتری در سرمایه‌گذاری خود داشته باشید.

معاملات الگوریتمی چیست؟

الگوریتم‌ها که می‌توانند بیش از یکی باشند، برای انجام معاملات بررسی‌های لازم را از جنبه‌های گوناگونی مانند زمان‌بندی، قیمت و حجم روی سفارشات و بازار انجام داده و تصمیم می‌گیرند.

معاملات الگوریتمی چیست؟

در تعریف معاملات الگوریتمی یا معاملات خودکار گفته می‌شود: «استفاده از برنامه‌های کامپیوتری برای ورود به سفارش‌های معاملاتی بدون دخالت انسان»؛ به بیان دیگر، این الگوریتم‌ها که بلک‌باکس یا «اَلگو تریدینگ» (Algorithmic Trading) هم نامیده می‌شوند، از زبان برنامه نویسی در کامپیوتر و مجموعه‌ای از دستورهای مشخص شده در کنار هم برای انجام معاملات استفاده می‌کنند.

این الگوریتم‌ها که می‌توانند بیش از یکی باشند، برای انجام معاملات بررسی‌های لازم را از جنبه‌های گوناگونی مانند زمان‌بندی، قیمت و حجم روی سفارشات و بازار انجام داده و تصمیم می‌گیرند. این امر کمک می‌کند تا بازار سرمایه به روشی اصولی‌تر و به دور از دخالت احساسات انسانی پیش رود که یکی از نتایج آن بالارفتن نقدینگی در بازار است.

درک الگو تریدینگ با یک مثال ساده

برنامه‌ کامپیوتری در حوزه معاملات الگوریتمی یا الگو تریدینگ با استفاده از دستور‌العمل‌های معاملاتی مانند این نوشته می‌شود: معامله‌گری با بررسی متحرک ۱۲ روزه و ۳۴ روزه‌ یک شرکت تصمیم به خرید سهام آن می‌گیرد، در زمانی که متحرک ۱۲روزه‌ آن بالاتر از ۳۴ روزه‌اش است. این معامله‌گر سهام خریداری شده‌اش را در زمانی که متحرک ۱۲ روزه پایین‌تر از متحرک ۳۴ روزه قرار بگیرد می‌فروشد.

همین استراتژی‌ ساده زمانی که در قالب معاملات الگوریتمی و زبان برنامه‌نویسی قرار می‌گیرد به طور خودکار سهام موجود در بازار و متحرک‌های آن‌ها را در بازه‌های زمانی مشخص شده بررسی می‌کند و با تشخیص به موقع بر اساس دستورالعمل‌های داده شده، خرید و فروش‌ها و معاملات را به پیش می‌برد.

مراحل عملکرد معاملات الگوریتمی

نتیجه‌ مطلوب از معاملات الگوریتمی نیاز به فراهم آوردن بستر آن‌ها دارد. بستر معاملات الگوریتمی به حضور ثابت و بی‌نقص سه بازیگر اصلی وابسته است.

مطابقت دهنده‌های بازار یا منبع تغذیه‌ داده‌ها که فرمت اطلاعات موجود در بازار را به فرمت سیستم در اختیار معامله‌گر تبدیل می‌کند. این کار از طریق رابط برنامه‌نویسی(API) که بازار معاملاتی در اختیار معامله‌گر می‌گذارد انجام می‌شود.

موتور پیشرفته پردازش ماوقع که مغز متفکر الگوریتم معاملاتی ما است. در این مرحله الگوریتم برنامه‌ریزی شده بر اساس استراتژی تعریف شده‌اش شرایط را پردازش می‌کند، محاسبات آماری و مقایسه‌ داده‌های تاریخی لازم را انجام می‌دهد و در نهایت تصمیم به سفارش‌گیری می‌گیرد و آن را اجرا می‌کند.

در مرحله‌ بعد سفارش‌ها توسط الگوریتم به بازار سرمایه ارسال می‌شوند، اما زمانی این مرحله اجرا می‌شود که زبان الگوریتم بر اساس زبان مبنای بازار سرمایه کد نویسی شده و قابل درک باشد.

وظایف معاملات الگوریتمی

معاملات الگوریتمی برای انجام درست و کامل استراتژی مشخص شده‌‌شان ۴ وظیفه به عهده دارند:

  • بر اساس استراتژی تعریف شده در برنامه‌ریزی‌شان، بازار را کامل رصد کرده و سهام و محصولات مختلف را بررسی کنند، تا فرصت‌های معاملاتی را به موقع و درست تشخیص دهند.
  • در مرحله‌ی بعد پوزیشن‌گیری کنند.
  • پوزیشن‌های بازشده را مدیریت کنند.
  • در فرایند معامله (با توجه به دستورالعمل‌های تعریف شده‌‌‌‌شان) مدیریت ریسک و سرمایه‌‌گذاری را بر عهده بگیرند.

این چهار مرحله گاهی تماما به صورت خودکار و توسط ربات‌ها (ربات معامله‌گر) انجام می‌شود که معاملات «تماما خودکار» را در بر می‌گرد و گاهی در برخی بخش‌ها سلیقه و نظر انسانی دخیل می‌شود که در آن صورت معاملات «نیمه خودکار» عنوان می‌شوند.

پیش‌نیازهای فنی برای معاملات الگوریتمی

اکنون نیاز است که الگوریتم‌ها بر اساس این استراتژی‌ها و دسته‌بندی‌های گفته شده توسط برنامه‌های کامپیوتری طراحی شوند. طی این فرایند یک نرم‌افزار یا ربات معامله‌گر ساخته می‌شود که به معاملات و سفارشات دسترسی دارد و آن‌ها را براساس الگوریتم‌های برنامه‌ریزی شده به طور خودکار مدیریت می‌کند. عملی کردن این فرایند نیازمند موارد زیر است:

  • تسلط به زبان برنامه‌نویسی برای نوشتن برنامه استراتژی معاملات یا به کارگیری یک متخصص برنامه نویسی و یا تهیه نرم‌افزار معاملاتی
  • ارتباط با شبکه و دسترسی به پلتفرم معاملات به منظور پوزیشن‌گیری مناسب و انجام سفارشات توسط متخصص
  • دسترسی به اطلاعات و دیتای بازار سرمایه تا بتوان آن‌ها را در اختیار الگوریتم برای انجام وظایف تعریف‌شده‌اش قرار داد.
  • ایجاد زیرساخت لازم برای انجام پیش تست روی سیستم برنامه ریزی شده پیش از ورود به بازار واقعی
  • فراهم کردن اطلاعات تاریخی لازم و دیتای شرایط بازار در گذشته بسته به استراتژی اجرا شده در الگوریتم برای تست کردن آن

مزایای منظور از معاملات الگوریتمی چیست؟ استفاده از معاملات الگوریتمی

۱-صرفه‌جویی در زمان

فعالان بازار سرمایه روزانه ساعت‌ها وقت صرف رصد بازار و یافتن سیگنال‌های مناسب می‌کنند. که این کار با گسترش بازار و بالا رفتن تعداد نمادها سخت‌تر و زمان‌برتر خواهد شد. اما الگوریتم‌ها اینکار را باسرعت و دقت بیشتر از طریق زیر نظر گرفتن کل بازار و نمادهای آن به صورت همزمان انجام می‌دهند.

در بازارهای جهانی که به صورت ۲۴ ساعته فعال هستند الگوریتمیک ترندینگ نیاز مستمر رصد بازار از سوی معامله‌گر را نیز از بین می‌برد. بر همین اساس انجام معاملات نیز توسط الگوریتم‌ها درست و دقیق زمان‌بندی می‌شوند و سفارشات با سرعت بیشتر صورت می‌گیرند.

نتیجه‌ این سرعت جلوگیری از تغییرات آنی قیمت هم می‌تواند باشد. همچنین با بالا رفتن سرعت ورود به معاملات یا خروج از آن‌ها، ضرر مالی ناشی از تاخیر در ثبت سفارش‌ها به حد چشمگیری کاهش می‌یابد. باید در نظر گرفت سرعت کامپیوتر در انجام چنین کارهایی از سرعت انسان بسیار بیشتر است.

۲-کنترل احساسات در مدیریت معاملات

پیش‌تر گفتیم که از عوامل موفقیت یک فعال در بازار سرمایه تعهد به استراتژی است. اما در تصمیم‌گیری‌های انسانی، عدم کنترل و غلبه بر احساسات بارها منجر به اشتباهات جبران ناپذیر در بازار سرمایه شده و این تعهد را زیر سوال برده است.

استفاده از الگوریتم‌های معاملاتی این ریسک را تا حد امکان پایین آورده و با حذف مداخلات احساسی تعهد به استراتژی‌ را به بیشترین میزان می‌رساند. همچنین خطاهای دیگر انسانی که در انجام دستی معاملات اتفاق می‌افتد و بسیار هم مرسوم است نیز به کمک معاملات الگوریتمی به حداقل ممکن خود می‌رسد.

پس علاوه بر سرعت بخشیدن، الگوریتم‌ها درصد دقت معاملات را هم بالا می‌برند و سفارشات در این روش سریع‌تر و دقیق‌تر از حالت دستی و سنتی انجام می‌شود

۳-کاهش تخلفات در بازار

تخلفات معمولا توسط انسان‌ها انجام می‌شوند و ماشین قادر به تخلف نیست. بنابراین استفاده از معاملات خودکار که بدون دخالت انسان انجام می‌شود آمار تخلفات را در بازار سرمایه تا حد زیادی کاهش می‌دهد. یکی از دلایل میل بازارهای جهانی به سوی معاملات الگوریتمی همین موضوع مهم است.

۴-کاهش هزینه

معاملات الگوریتمی تنها هزینه پیاده‌سازی و خدمات مرتبط با آن‌ها را برای معامله‌گر به همراه دارند و سرمایه‌گذار موظف به پرداخت کارمزد تحقیقات تحلیلی به هیچ کارگزاری نیست.

۵-اجرای استراتژی‌های معاملاتی پیچیده

از آنجا که الگوریتم‌های معاملاتی توسط کامپیوترها انجام می‌شوند قادر به پیاده‌سازی استراتژی‌های پیچیده و استفاده از چند استراتژی به صورت همزمان هستند. آنچه در روش‌های دستی شاید غیر ممکن یا بسیار دور از تحقق باشد.

۶-قابلیت پیش‌ تست

معاملات الگوریتمی را می‌توان با کمک اطلاعات و داده‌های تاریخی بازار در شرایط مشابه، آزمایش کرد و معامله‌گر می‌تواند به کمک این پیش تست ریسک سرمایه‌گذاری‌اش را کاهش دهد. با پیش تست می‌توان به نکاتی مانند میزان سود، میزان ضرر، متوسط میزان سود به ضرر و تعداد معاملات در محدوده‌ی زمانی آزمایش شده دست یافت.

معایب استفاده از معاملات الگوریتمی

۱-دقت پایین در کد نویسی

یک ربات معامله‌گر (اکسپرت) توسط انسان برنامه‌ریزی می‌شود. درواقع کامپیوتر چیزی را اجرا می‌کند که به آن دستور داده شده است. حال اگر در ثبت این دستورات (کدنویسی) دقت لازم صورت نگیرد، این ربات می‌تواند تمام معادلات را برهم زده و استراتژی‌ها را اشتباه پیاده کند. این اشتباه ممکن است منجر به خسارات بزرگ و کوچک شود.

۲-نواقص فنی و مکانیکی

پیش‌تر گفتیم که از الزامات پیاده کردن معاملات الگوریتمی دسترسی به شبکه اطلاعات بازار است. این دسترسی از طریق اینترنت صورت می‌گیرد، تصور کنید حین انجام معاملات برق یا اینترنت قطع شود. این قطعی ممکن است منجر به عدم اجرای کامل استراتژی الگوریتم شده و در نتیجه زیان‌بار بودن معاملات برای معامله‌گر را به دنبال داشته باشد. بنابراین هر خرابی فیزیکی که مانع علکرد کامل الگوریتم شود می‌توان در این دسته معایب قرار داد. برای کاهش احتمال بروز این مشکلات مانیتورینگ و نظارت فردی بر سیستم توصیه می‌شود.

۳-اشتباهات در پی ‌تست

بک تست به طور خلاصه نوعی آزمایش بر اساس گذشته برای پیش‌بینی آینده در موقعیت‌های مشابه است. همین جمله می‌تواند نشان دهد که درصد خطایی اجتناب‌ناپذیر در بک‌تست‌ها وجود دارد. این درصد خطا، هرچند ناچیز، ممکن است اتفاق افتد و در این صورت تمام معادلات برهم خورده و پیش‌بینی‌ها محقق نشود. برای رفع این مشکل، بهینه‌سازی مداوم سیستم بر اساس خطاهای بک‌تست و همچنین شرایط روز بازار و آپدیت اطلاعات آن انجام می‌شود.

معاملات الگوریتمی چیست و چه کاربردی در بازار ارزهای دیجیتال دارد؟

معاملات الگوریتمی Algoritmic Trading چیست

معاملات الگوریتمی (Algoritmic Trading) که به معاملات خودکار نیز شناخته می‌شود، یک برنامه کامپیوتری است که بر اساس دستورالعمل‌هایی که از قبل تعیین شده، معاملات در بازار ارزهای دیجیتال را انجام می‌دهد. در واقع این نوع معاملات توسط یک برنامه کامپیوتری انجام می‌شود و برای انجام ترید نیازی به حضور تریدر در بازار نخواهد بود. همچنین سرعت پردازش بالای کامپیوتر در مقایسه با انسان، این روش را بسیار کارآمدتر و عموما پرسودتر از ترید توسط انسان کرده است. این مقاله را به آموزش این نوع معاملات اختصاص داده‌ایم.

معاملات الگوریتمی چیست؟

معامله الگوریتمی

همه ما – حتی کسانی که تاکنون برنامه‌نویسی نکرده‌اند – می‌دانیم که کامپیوترها و سیستم‌های کامپیوتری برای انجام هرکاری نیاز به برنامه دارند. اما برنامه نویسی معمولا با نوشتن برنامه آغاز نمی‌شود. قبل از نوشتن برنامه لازم است گام به گام، کارهایی را که باید برنامه انجام دهد، تعریف کنیم. به این تعریف گام به گام یک عملیات، طراحی الگوریتم یا Algorithm گفته می‌شود. در مورد روش معاملات الگوریتمی نیز به تعریف یک سلسله شرایطی مانند، زمان، قیمت، حجم و… برای انجام معاملات توسط یک برنامه کامپیوتری نیاز داریم. معمولا برای پیاده‌سازی این شرایط و تفهیم این شرایط به زبان کامپیوتر، از کدنویسی و استفاده از زبان‌های برنامه‌نویسی رایج، استفاده می‌کنیم. مشخصه بارز معاملات الگوریتمی این است که انسان در انجام معاملات نقشی ندارد و تمام مراحل یک ترید، اعم از تحلیل بازار، تعیین نقطه ورود، تعیین مقدار سرمایه درگیر در هر معامله، حد سود و حد ضرر توسط برنامه کامپیوتری انجام می‌شود. در این روش، تریدر به طور مستقیم در بازار حضور ندارد اما در صورتی که از روش مناسبی استفاده کند، برنامه ترید او، برای او کسب ثروت خواهد کرد.

ذکر یک مثال ساده برای تبیین Algorithmic Trading

برای درک بهتر از این روش معاملاتی، یک مثال بسیار ساده از معاملات الگوریتمی می‌زنیم. اندیکاتور میانگین متحرک جزو اندیکاتورهای بسیار ساده در تحلیل تکنیکال است. یکی از روش‌های انجام ترید با استفاده از این اندیکاتور، استفاده از دو اندیکاتور ۵۰ و ۲۰۰ روزه است. مطابق قوانین این اندیکاتور، درصورتی که میانگین متحرک ۵۰ روزه، میانگین متحرک ۲۰۰ روزه را به سمت بالا بشکند، سیگنال خرید صادر شده و هنگامی که میانگین متحرک ۵۰ روزه در زیر میانگین متحرک ۲۰۰ روزه قرار بگیرد، سیگنال فروش صادر می‌شود. اگر تریدری بخواهد با استفاده از این اندیکاتور، معاملات خودکار انجام دهد، باید همین دو شرط را به زبان کامپیوتر پیاده‌سازی کند. پس ما احتیاج به یک برنامه کامپیوتری داریم که دو اندیکاتور میانگین متحرک ۵۰ و ۲۰۰ روزه را برای تمامی ارزهای دیجیتال محاسبه کند. هر زمان و در هر نموداری، اگر میانگین متحرک ۵۰ روزه بالاتر از میانگین متحرک ۲۰۰ روزه قرار گرفت، در همان لحظه اقدام به خرید آن دارایی دیجیتال کرده و زمانی که برعکس آن اتفاق افتاد، از بازار خارج شده و دارایی خریداری شده را به فروش برساند. به همین ترتیب بر اساس شرایطی که برای برنامه تعیین شده، اگر موقعیتی برای ورود بوجود آمد، برنامه به صورت خودکار معامله را آغاز می‌کند. با استفاده از چنین برنامه‌ای نیاز به حضور تریدر در بازار نخواهد بود. این نوع معاملات که تماما توسط کامپیوتر انجام می‌شود را معاملات الگوریتمی می‌گویند.

مزایای استفاده از معاملات الگوریتمی چیست؟

استفاده از این روش برای انجام معاملات و ترید در بازار ارزهای دیجیتال مزایای زیر را به همراه دارد:

  • انجام سفارش خرید و فروش به صورت خودکار و توسط برنامه صورت خواهد گرفت، بنابراین همواره سفارش‌ها در بهترین قیمت انجام می‌شود.
  • زمان، در این روش معنایی ندارد. در تمام ساعات شبانه‌روز به محض برقرار شدن شرایط ورود، معامله انجام خواهد شد.
  • امکان بررسی و ارزیابی چندین نماد مختلف در یک لحظه وجود دارد. انجام تحلیل همزمان نمودار قیمت چند دارایی دیجیتال توسط انسان غیرممکن است.
  • با استفاده از این روش، احتمال وقوع خطای انسانی در زمان انجام معاملات به دلیل خستگی یا بی دقتی، به صفر می‌رسد. خطا در یک برنامه کامپیوتری، غیرممکن است.
  • یکی از مزایای مسلم این روش، آزمودن و صحت‌سنجی آن با استفاده از اطلاعات گذشته است. با انجام این کار می‌توان ایرادهای موجود در این روش را شناسایی و رفع کرد.
  • حرفه‌ای‌ترین تریدرها و معامله‌گران هم در مواقعی تصمیمات احساسی گرفته و احساساتشان بر منطق معاملاتیشان غلبه می‌کند و این اتفاق منجر به زیان آنها می‌شود. اما برای یک برنامه کامپیوتری، احساسات مفهومی ندارد و تمام کارها مطابق الگوریتم انجام خواهد شد.

استراتژی‌های Algorithmic Trading

معاملات الگوریتمی مختص استفاده از اندیکاتورها و ترکیب شدن آنها نیست بلکه در تعریف عام آن هرجایی در بازارهای مالی که موقعیتی برای کسب سود فراهم است، این روش وارد می‌شود. در ادامه به برخی از استراتژی‌های رایج در انجام این معاملات اشاره خواهیم کرد.

استراتژی‌های دنبال‌کننده روند

یکی از رایج‌ترین استراتژی‌های مورد استفاده در معاملات الگوریتمی ، شناسایی روند و همراه شدن با روند بازار است. این شناسایی روند با استفاده از اندیکاتورهای رایج در تحلیل تکنیکال انجام می‌شود. این استراتژی، یکی از ساده‌ترین استراتژی‌ها در میان دیگر روش‌ها است. زیرا این استراتژی، نیازی به پیش‌بینی قیمت در آینده ندارد و صرفا با روند فعلی بازار همراه خواهد شد. استفاده از میانگین متحرک ۵۰ روزه و ۲۰۰ روزه که در ابتدای این مقاله اشاره شد، جزو این دسته تقسیم‌بندی می‌شود.

فرصت‌های آربیتراژ

Algorithmic trading

این فرصت زمانی ایجاد می‌شود که یک دارایی دیجیتال، در دو (یا بیشتر) صرافی مختلف معامله شود و قیمت آن در یکی از این صرافی‌ها کمتر از دیگر صرافی‌ها باشد. در چنین شرایطی می‌تواند این دارایی دیجیتال را در صرافی که قیمت پایین‌تری دارد، خریداری کرد و با انتقال به صرافی دیگر، در قیمت بالاتری به فروش رساند. این الگوریتم باید اختلاف میان قیمت یک دارایی واحد در بازارهای مختلف را رصد کند و در صورت یافتن یک دارایی که شرایط آربیتراژ را دارد، به صورت مداوم معاملات را بر روی همان دارایی انجام دهد. تا زمانی که این اختلاف قیمت وجود داشته باشد، این الگوریتم، معاملات را به سرعت انجام می‌دهد و به محض برطرف شدن اختلاف قیمتی، این معامله بسته خواهد شد. به دلیل آنکه این معاملات به سرعت انجام می‌شود ممکن است صدها یا هزاران معامله را بر روی یک دارایی انجام شود که در مجموع سود قابل توجهی را به ارمغان خواهد آورد. البته معاملات آربیتراژ توسط انسان نیز قابل انجام است؛ اما استفاده از معاملات الگوریتمی سرعت و دقت و تعداد معاملات را بسیار افزایش خواهد داد که در نهایت سود بالاتری را برای تریدر به ارمغان می‌آورد.

زمان بازتنظیم شاخص‌ها

در بازارهای مالی شاخص‌های زیادی وجود دارد که معدل و میانگین وضعیت یک گروه خاص و یا بخش خاصی از بازار را نمایش می‌دهد. برای مثال، شاخص دیفای در بازار ارزهای دیجیتال، نماینده رفتار چند پروژه دیفای مطرح در بازار ارزهای رمزنگاری شده است. عدد این شاخص، میانگینی از قیمت ارزهای دیجیتال موجود در حوزه دیفای است. این شاخص معمولا در بازه‌های زمانی مشخصی و با توجه به تغییرات قیمتی دارایی‌های پشتوانه خود، بازتنظیم می‌شوند. در زمانی که تغییرات قیمتی شدیدی در قیمت پروژه‌های دیفای اتفاق می‌افتد، این شاخص به سرعت تغییر نخواهد کرد و طبیعتا با یک اختلاف زمانی تغییرات در آن اعمال خواهد شد. این زمان فرصت مناسبی برای ورود معاملات الگوریتمی است. در چنین شرایطی نیز می‌توان از تاخیر در محاسبه مجدد شاخص‌ها برای کسب سود استفاده کرد.

استراتژی‌های مبتنی بر مدل‌های ریاضی

مدل‌های ریاضی اثبات شده، مثل استراتژی معاملاتی Delta-neutral، که امکان انجام معامله بر روی ابزارهای اختیار معامله و معاملات مشتقه را با استفاده از روش‌های ریاضی فراهم کرده است. در این روش اختلاف قیمت بین معاملات مشتقه یک دارایی با قیمت دارایی اصلی در بازار اسپات رصد می‌شود و در صورتی که بر اساس استراتژی، شرایط برای باز کردن پوزیشن لانگ یا شورت فراهم باشد، به صورت خودکار سفارش‌ها فعال خواهد شد. در این روش گاهی سود حاصل از یک معامله زیر یک درصد است اما به دلیل آنکه این معاملات توسط برنامه و به صورت خودکار انجام می‌شود، تعداد معاملات انجام شده بالاست و در نهایت مجموع سودهای حاصل از این معاملات الگوریتمی ، عدد قابل توجهی خواهد بود.

استراتژی Mean reversion

این استراتژی معاملات الگوریتمی بر اساس نظریه بازگشت به میانگین طراحی شده است. در این استراتژی، بالاترین و پایین‌ترین قیمت یک دارایی در یک بازه زمانی مشخص، یک اتفاق مقطعی در بازار تلقی می‌شود که به صورت طبیعی در بازار رقم می‌خورد و معمولا قیمت، به مقدار میانگین خود بازمی‌گردد (البته این مورد براساس احتمالات است و رفتار چرخه‌ای بازار معمولا چنین شرایطی را بوجود خواهد آورد). شناسایی و تعریف یک بازه قیمتی و طراحی یک الگوریتم براساس آن، به برنامه معاملاتی این امکان را می‌دهد تا به صورت خودکار معاملات را انجام دهد. زمانی که قیمت از بازه قیمتی تعریف شده در الگوریتم تجاوز کند، شرایط برای باز کردن پوزیشن معاملاتی فراهم می‌شود. در چنین شرایطی، نقطه خروج از این معامله، بازگشت قیمت به میانگین بازه تعیین شده است.

استراتژی‌های مورد استفاده در ترید دارایی‌های دیجیتال و دیگر دارایی‌ها بسیار گسترده‌اند. اما ویژگی یکسان در تمامی آنها، داشتن یک الگوریتم و دستورالعمل برای شرایط یک معامله و انجام آن توسط یک برنامه کامپیوتری و به صورت خودکار است. این الگوریتم و استراتژی بسیار متنوع است و هر تریدر بر اساس تحقیقات و تجربیات شخصی خود آن را تعریف می‌کند. سپس ربات‌های معاملاتی این استراتژی را در بازار پیاده می‌کنند. در ادامه این مقاله احتیاجات فنی برای داشتن یک معامله الگوریتمی را معرفی خواهیم کرد.

الزامات فنی برای یک Algorithmic trading

معاملات الگوریتمی

اجرای معاملات الگوریتمی با استفاده از برنامه کامپیوتری بخش نهایی در یک طرح‌ریزی یک الگوریتم است. صحت‌سنجی این الگوریتم که اصطلاحا Backtesting گفته می‌شود، یکی دیگر از مولفه‌های ضروری در طراحی و اجرای معاملات الگوریتمی است. اما بخش مهم، تعریف روش معامله به زبان کامپیوتر است. در واقع پیاده‌سازی آنچه در ذهن معامله‌گر است به زبان قابل فهم برای کامپیوتر یکی از مراحل اصلی در طراحی یک الگوریتم معاملاتی است. انجام این کار نیازمند داشتن دانش فنی در حوزه‌های زیر است:

  • دانش برنامه‌نویسی کامپیوتر برای کدنویسی و معرفی استراتژی معاملاتی به کامپیوتر. یا خود تریدر باید این دانش را کسب کند یا برای پیاده‌سازی شرایط لازم برای انجام معاملات الگوریتمی ، از یک برنامه‌نویس کمک بگیرد.
  • اتصال به شبکه و دسترسی به پلتفرم‌های معاملاتی به منظور انجام معاملات، مانند صرافی بایننس یا هر پلتفرم معاملاتی دیگر در بازار ارزهای دیجیتال که امکان انجام معاملات الگوریتمی در آن وجود دارد.
  • دسترسی به اطلاعات بازار؛ الگوریتم طراحی شده باید به اطلاعات بازار اعم از قیمت، حجم، تاریخ معاملات و هر گونه اطلاعات دیگری که الگوریتم به آن نیاز دارد، دسترسی داشته باشد.
  • سیستم معاملاتی باید امکان صحت‌سنجی و بک تست را داشته باشد تا پیش از انجام معاملات واقعی، صحت الگوریتم و استراتژی آن ارزیابی شود. این کار ریسک از دست رفتن سرمایه در معاملات الگوریتمی را به میزان زیادی کاهش خواهد داد.

به این لیست می‌توان موارد بیشتری اضافه کرد اما نکات مهم در پیاده سازی یک استراتژی برای انجام معاملات الگوریتمی شامل موارد فوق می‌شود. در ادامه برای فهم بهتر این روش معاملاتی یک مثال واقعی از یک معاملات الگوریتمی را دنبال می‌کنیم.

یک مثال واقعی از معاملات الگوریتمی

تنظیمات صفحه ترید

شرکت نفت شل رویال در دو بازار سهام آمستردام هلند و بازار سهام لندن لیست بوده و معاملات آن در این دو بازار سهام انجام می‌شود. استراتژی معاملات الگوریتمی پیاده‌سازی شده در بازار این سهام، آربیتراژ است. با استفاده از این الگوریتم، هر زمان فرصت آربیتراژ در سهام این شرکت بوجود آید، معاملات به صورت خودکار انجام خواهد شد.

قیمت سهام این شرکت در بازار سهام آمستردام به یورو محاسبه می‌شود، در حالی که قیمت سهام آن در بازار سهام لندن، به پوند محاسبه می‌شود. در واقع سهام این شرکت دارای دو قیمت مختلف به یورو و پوند است. با توجه به اختلاف ساعت آغاز کار بازار سهام در کشورهای مختلف، معاملات سهام این شرکت در بازار بورس اوراق بهادار آمستردام یک ساعت زودتر از بازار سهام لندن آغاز می‌شود. می‌توان قیمت سهام این شرکت در این دو بازار را رصد کرد تا هر زمان اختلاف قیمتی در آنها مشاهده شد، معاملات آربیتراژ به صورت خودکار انجام شود. برای انجام این کار به موار زیر احتیاج است:

  • استفاده از یک کامپیوتر که قیمت سهام را در دو بازار رصد کند.
  • دریافت اطلاعات قیمت از بازار سهام لندن و آمستردام
  • استفاده از یک پلتفرم انتشار قیمت ارزها در بازار فارکس، که نسبت قیمت پوند به یورو را محاسبه کند.
  • استفاده از یک پلتفرم معاملاتی برای انجام معاملات
  • استفاده از تاریخچه معاملاتی برای صحت‌سنجی کار الگوریتم

این برنامه کامپیوتری باید مراحل زیر را انجام دهد:

  • دریافت قیمت سهام شرکت نفت رویال در دو بازار سهام
  • اطلاع از قیمت لحظه‌ای نسبت پوند به یورو در بازار فارکس
  • محاسبه اختلاف قیمت در دو بازار سهام و مقایسه آن با استفاده از نسبت پوند به یورو و محاسبه کارمزد انجام معاملات. در صورتی که اختلاف میان آنها، قابل توجه بود، الگوریتم معامله فعال شود و سهام در بازاری که قیمت کمتری دارد، خریداری شود و در بازار سهام دیگر که قیمت سهام بالاتر است به فروش برسد.
  • اگر اختلاف قیمت همچنان وجود داشت، معامله مجددا انجام شود. این سلسله معاملات تا زمانی که اختلاف قیمت وجود دارد، به دفعات ادامه یابد. در صورت یکسان شدن قیمت در دو بازار، معاملات متوقف شود.

کسب سود به همین سادگی و راحتی! هرچند دست‌یابی به یک الگوریتم معاملاتی سودده، به هیچ عنوان کار ساده‌ای نیست. ذکر یک نکته ضروری است؛ زمانی که شما بتوانید معاملات الگوریتمی را در یک بازار انجام دهید، به طور حتم دیگران نیز این کار را خواهند کرد. لذا معاملات الگوریتمی از نوسانات قیمت در صدم ثانیه و حتی هزارم ثانیه، استفاده خواهد کرد. طراحی یک الگوریتم معاملاتی برای چنین وضعیتی، تجربه و دانش بسیار بالایی نیاز دارد.

سخن پایانی

همانطور که سود حاصل از چنین معاملاتی بالاست، ریسک انجام Algorithmic trading نیز بالاست. احتمالا کسب درآمد در ساعتی که خواب هستید و یا در تفریح هستید، بسیار جذاب است. اما معاملات الگوریتمی علاوه بر دانش بالا، مسائل دیگری نیز به همراه دارد. قطعی اینترنت، تاخیر در انجام سفارشات توسط صرافی به دلیل مشکلات احتمالی در سرور یا شلوغی شبکه و… و از همه مهمتر بروز اشکال در الگوریتم و وجود نقص و ایراد در کدهای برنامه معاملاتی شما می‌تواند ضررهای جبران ناپذیری به بار بیاورد. هر برنامه معاملاتی خودکار نیاز به اصلاح و رفع ایراد دارد که به طور مداوم باید بررسی شود. گاهی کد برنامه معاملاتی خوکار آنچنان پیچیده است که برای اصلاح آن باید صاحب استراتژی دانش فنی بالایی در زمینه علوم کامپیوتر داشته باشد. به همه این موارد دانش فنی از تحلیل بازار، تحلیل تکینکال، تحلیل فاندامنتال و شناخت دقیق و عمیق بازار را اضافه کنید.

معاملات الگوریتمی چیست و چرا باید به آن اهمیت داد؟

معاملات الگوریتمی یا معاملات خودکار چند وقتی است که در بازار سرمایه ایران به عنوان یکی از روندهای آتی بازار سرمایه خودنمایی می‌کنند. شرکت‌های استارت‌آپی و غیر استارت‌آپی بسیاری در این حوزه شروع به فعالیت کرده‌اند و ادعاهای جالب و غریبی مطرح می‌کنند.

در دنیا نیز یادگیری ماشین یا به طور کلی‌تر، هوش مصنوعی در حال عرض اندام در بازارهای مالی است. شرکت‌های بزرگی در دنیا از جمله CITADEL و Black Rock در آمریکا به عنوان رهبران سرمایه‌گذاری الگوریتمی و شرکت‌هایی از جمله Quantopian و Numerai با دیدگاه‌های متفاوت در حال تلاش برای رهبری هوش مصنوعی یا به طور ساده‌تر، معاملات الگوریتمی در بازارهای مالی هستند. اما معاملات الگوریتمی چیست و چرا باید به آن اهمیت داد؟

معاملات الگوریتمی چیست؟

اگر بخواهیم به زبان ساده معاملات الگوریتمی را تعریف کنیم، به هر نوع معامله خودکار اعم از اینکه پربسامد (High Frequency Trading) یا کم بسامد باشد معاملات الگوریتمی می‌گویند. به عنوان یک نمونه ساده، حد سود و ضرر یک الگوریتم، معاملاتی است که با رسیدن قیمت به اعداد خاصی، دستور خرید یا فروش خودکار را انجام می‌دهد. اما آیا معاملات الگوریتمی به همین موارد ختم می‌شود؟ پاسخ قطعا خیر است.

حدود سود و ضرر و الگوریتم‌های از این دست در طیف الگوریتم‌های معاملاتی در ابتدای طیف و در سمت الگوریتم‌های پایه‌ای و بسیار ساده قرار می‌‎گیرند؛ به نحوی که در سمت دیگر طیف، یک الگوریتم معاملاتی است که بدون دخالت انسان تمام نمادها را بازرسی، ارزیابی و به کمک داده‌های بنیادی و تکنیکال، تحلیل کرده سپس فرآیند انتخاب سبد سهام، تخصیص دارایی به هر نماد، خرید در نقطه منظور از معاملات الگوریتمی چیست؟ درست و فروش در نقطه درست و شناسایی سود ضمن رعایت ریسک تعریف شده را به صورت خودکار انجام می‌دهد. ترسناک شد اما واقعی است. در حال حاضر الگوریتم‌هایی در دنیا وجود دارند که تمام این زنجیره را به صورت اتوماتیک انجام می‌دهند.

پس به طور ساده، هر معامله خودکار می‌تواند در نقطه‌ای از طیف معاملات الگوریتمی قرار گیرد. اگر بخواهیم این طیف را بر اساس عملکردهای آن طبقه‌بندی کنیم، می‌توانیم دسته‌بندی زیر را معرفی کنیم:

  1. الگوریتم‌های معاملاتی اجرای معاملات: این دسته از الگوریتم‌های معاملاتی که در نوشته‌های بعد به آنها بیشتر خواهیم پرداخت، صرفا برای اجرای دستورات معاملاتی تحلیلگر طراحی شده‌اند. یعنی معامله‌گر، نماد مورد نظر و نقطه ورود / خروج را نیز انتخاب کرده است (البته ممکن است تمام این تحلیل‌ها را اشتباه کرده باشد و معامله او به ضرر منجر شود.) از این نقطه، تحلیلگر صرفا می‌خواهد مقداری از وجوه خود را به سهام تبدیل کند و مساله او اجرای معامله است. مثلا با اعداد و ارقام بازار سرمایه ایران، فرض کنید یک معامله‌گر می‌خواهد ۵ میلیارد تومان سهام ایران خودرو خریداری کند. واضحا نمی‌توان یک سفارش به ارزش ۵ میلیارد تومان در بازار ثبت کرد، این موضوع باعث تاثیرگذاری بر بازار (Market Impact) می‌شود که معمولا برای معامله‌گر زیانبار است، زیرا افراد با مشاهده سفارش او در قیمت‌های بالاتر اقدام به خرید می‌کنند و لذا قیمت قبل از اینکه معامله‌گر سهام را خریداری کند، رشد می‌کند. لذا یک الگوریتم معاملاتی وظیفه شکستن سفارش به سفارش‌های کوچک در حجم‌های متفاوت و اجرای آنها در بازه‌های زمانی متفاوت دارد، لذا Market Impact کاهش می‌یابد.
  2. الگوریتم‌های سیگنال‌دهی: این دسته از الگوریتم‌ها معمولا به معامله‌گر یا تحلیلگر، دیتای اضافه‌ای ارائه می‌کنند و باعث می‌شوند فرآیند تصمیم‌گیری تحلیلگر یا معامله‌گر بهبود یافته و در نتیجه بازدهی او بهتر شود. این دسته از الگوریتم‌های معاملاتی معمولا به خودی خود سودآور نیستند و باید با مجموعه‌ای از آنها به‌طور همزمان کار یا صرفا در کنار تحلیل‌های دیگر، نقش افزایش بهره‌وری را بازی کرد. از جمله الگوریتم‌های سیگنال‌دهی می‌توان به تمام اندیکاتورهای تحلیل تکنیکال مثل RSI، MacD، MA یا Ichimoku اشاره کرد که به صورت آماری ثابت شده است در بلندمدت سودآوری بیش از میانگین بازار ندارند.
  3. الگوریتم‌های مانیتورینگ یا پایش بازار: این دسته از الگوریتم‌ها که به نوعی می‌توان آنها را در طبقه الگوریتم‌های سیگنال‌دهی هم قرار داد، وظیفه پایش و مانیتور کردن بازار را دارند. مثلا فرض کنید قصد دارید با باز شدن نماد یک سهم، برای بازه کوتاهی نمادهای همگروه این سهم را بفروشید / خریداری کنید. یا مثلا می‌خواهید به محض ارسال شدن اطلاعیه صورت‌های مالی تعدادی از نمادهای خاص از آن مطلع شوید. یا دائما پیغام‌های ناظر بازار مربوط به نمادهای پورتفوی خود را دنبال کنید. یا در موارد حرفه‌ای‌تر، قصد دارید در منظور از معاملات الگوریتمی چیست؟ حالت کاهش نرخ بهره (وام)، شرکت‌هایی که کمترین مقدار وام را در حساب خود دارند شناسایی کنید. به کمک الگوریتم‌های پایش بازار می‌توانید با جست‌وجوی شرایط مورد نظر خود بر روی همه یا بخشی از بازار، عملیات monitoring بهینه داشته باشید.
  4. الگوریتم‌های position trading یا کم بسامد: این دسته از الگوریتم‌های معاملاتی که با شرایط فعلی بازار سرمایه ایران تطابق بسیاری دارند به خرید یا فروش سهم به منظور نگهداری بلندمدت می‌پردازند. لازم به ذکر است در حوزه معاملات الگوریتمی به هر فرآیند که زمانی بیش از یک ساعت داشته باشد، بلندمدت گفته می‌شود. مثلا فرض کنید استراتژی شما فروش به صف خرید در شرایط عرضه شدن صف و خرید در قیمت‌های پایین‌تر است. یک الگوریتم معاملاتی position trading می‌تواند به محض رسیدن حجم صف خرید / فروش به شرایط پیش‌بینی‌شده شما، به صورت خودکار دستور خرید / فروش نماد را انجام دهد و در قیمت‌های پایین‌تر که احتمالا رسیدن به آن بیش از چند دقیقه زمان خواهد برد، دستور معکوس را انجام دهد. همچنین الگوریتم‌های دیگری نیز در این طبقه وجود دارند که خریدوفروش هر نماد در آنها به طور متوسط بیش از چند هفته زمان می‌برد. تفاوت الگوریتم‌های position trading با دسته‌های قبل، تشخیص نقاط ورود و خروج با احتمال بالا است. در واقع فرض کنید شما از الگوریتم‌های monitoring استفاده و ۱۰ نماد انتخاب کرده‌اید، به کمک مجموعه‌ای از الگوریتم‌های سیگنال‌دهی به این نتیجه رسیده‌اید که سهم X می‌تواند به شما بازدهی ۱۰ درصدی در مدت زمان یک الی دو هفته ارائه دهد. حال شما به کمک الگوریتم‌های اجرای معاملات، اقدام به معامله این سهم کرده‌اید. در صورتی که تمام این فرآیند اتوماتیک باشد، تبریک! شما نه تنها یک ماشین چاپ پول دارید، که می‌توانید آن را در طبقه الگوریتم‌های position trading این نوشته طبقه‌بندی کنید.
  5. الگوریتم‌های HFT یا پر بسامد(High Frequency Trading): این دسته از الگوریتم‌ها بنا به تعریف سایت investopedia باید به طور متوسط مدت زمان خرید تا فروش دارایی خریداری شده آنها کمتر از پنج‌دهم ثانیه باشد تا در این طبقه قرار گیرند. در بازار سرمایه بین‌الملل، کارگزاری‌های بسیاری هستند که به ارزش معامله شما هیچ کاری ندارند که برعکس به ازای هر معامله از شما کارمزد ثابتی دریافت می‌کنند. حال اگر ارزش سرمایه شما به سمت بی نهایت میل کند، درصد کارمزد معامله به سمت صفر میل می‌کند. مثلا شما ممکن است ارزش معامله‌تان آنقدر زیاد باشد که در صورت رشد رقم چهارم بعد از ممیز به اندازه یک واحد، کارمزد معاملاتی شما پرداخت شود. این دسته از معاملات که بازار NASDAQ و NYSE را قبضه کرده است، معمولا در جفت ارزها (Forex) نیز بسیار پرکاربرد است اما به دلیل ساختار کارمزد در ایران، استفاده از آن معمولا با زیان به دلیل پرداخت کارمزد همراه است. الگوریتم‌های آربیتراژ معمولا در این طبقه قرار می‌گیرند.

«واقعا» باید به موضوع اهمیت دهیم؟

بخواهیم یا نخواهیم، ابزار معاملات الگوریتمی در بازارهای مالی سراسر دنیا، از آمریکا تا اتحادیه اروپا، از چین تا هند و سنگاپور چنان مزیت رقابتی برای شرکت‌های سرمایه‌گذاری ایجاد کرد که توانستند در بازه زمانی کوتاهی شرکت‌های سنتی را تماما از بازار بیرون کنند. منطقا به دلیل مزایای کامپیوتر نسبت به انسان، در حوزه سرعتِ تحلیل، سرعت اجرای دستورات و تصمیم‌گیری، عدم خستگی و عدم خطا و همچنین عدم تاثیر احساسات بر معامله و استراتژی نمی‌توان امیدوار بود در این موج، جایی برای روش‌های سنتی باقی بماند.

اما آیا در آینده هیچ جایی برای انسان در بازارهای مالی نخواهد بود؟ پاسخ به این سوال نیز منفی است. در حال حاضر از نظر حجم معاملات (تعداد)، معاملات الگوریتمی بیش از ۸۵% از کل معاملات بازار سرمایه آمریکاست و این موضوع به معنی قبضه یک بازار ۵۲ تریلیون دلاری توسط الگوریتم‌های معاملاتی است اما آن ۱۵% باقی مانده هنوز به سایر روش‌ها تحلیل و معامله می‌کنند. در واقع کامپیوترها و الگوریتم‌های معاملاتی در بازارهای مالی فعلا نتوانسته‌اند در حوزه خلاقیت و ایجاد و نوآوری در روش‌های جدید و تحلیل‌های جدید از انسان جلو بیفتند و در واقع این ۱۵%، بهترین تریدرها و تحلیلگرهای دنیا هستند که هنوز توسط الگوریتم‌های معاملاتی از بازار بیرون نشده‌اند و چه بسا این ۱۵% نویسنده آن ۸۵% الگوریتم‌های معاملاتی باشند. لذا باید دید آیا می‌خواهیم این موج را جدی گرفته و با «به استقبال آن رفتن» و یادگیری این ابزار جدید و پذیرفتن سختی‌های یادگیری آن، در قسمت ۸۵ درصدی جایی برای خود ایجاد کنیم یا به فکر بازی در ۱۵% باقی مانده هستیم؟

مقالات مرتبط

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

برو به دکمه بالا